Dynamics of a Dirac oscillator coupled to an external field: A new class of solvable problems ✩,✩✩
نویسنده
چکیده
The Dirac oscillator coupled to an external two-component field can retain its solvability, if couplings are appropriately chosen. This provides a new class of integrable systems. A simplified way of solution is given, by recasting the known solution of the Dirac oscillator into matrix form; there one notices, that a block-diagonal form arises in a Hamiltonian formulation. The blocks are twodimensional. Choosing couplings that do not affect the block structure, these just blow up the 2 × 2 matrices to 4 × 4 matrices, thus conserving solvability. The result can be cast again in covariant form. By way of example we apply this exact solution to calculate the evolution of entanglement.
منابع مشابه
New exactly solvable relativistic models with anomalous interaction 1
A special class of Dirac-Pauli equations with time-like vector potentials of external field is investigated. A new exactly solvable relativistic model describing anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external e.m. field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magn...
متن کاملSome Observations on Dirac Measure-Preserving Transformations and their Results
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملFirst experimental realization of the Dirac oscillator.
We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be...
متن کاملNumerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method
The controlled harmonic oscillator with retarded damping, is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems. In this paper, to solve this problem, we presented an analytical method. This approach is based on the homotopy perturbation method. The solution procedure becomes easier, simpler and mor...
متن کامل